
Yet Another nlogn Sorting
Arijit Bhattacharya #1, Satrajit Ghosh *2

#Assistant Professor, Department of Computer Science and Application,
Gour Mahavidyalaya, Malda, West Bengal, India

*Associate Professor, Department of Computer Science,
Acharya Prafulla Chandra College, New Barrackpore, West Bengal, India

Abstract— Sorting of Data is classical problem in Data
Structure. Best known sorting algorithm can sort a sequence
of n Records at the expense of log(n !) key comparisons. This
work suggests a new data structure that achieves this
theoretical minimum. Interestingly, pre-order traversal
performed in such a structure can be readily mapped onto an
in-order sequence.

Keywords - Sorting, In-order, Pre-order, Height Balanced tree,
Divide and Conquer, NLC.

I. INTRODUCTION

Classification of data or sorting, depending upon their
salient features, is a classical problem of human civilization
and its socio economic activities. This is an important
traditional problem in business data processing that creates
the interest of the theoreticians as well. Sorting of an
arbitrary sequence of data and retrieval of the desired ones
from the sorted sequence is a classical problem in
computational science. Interestingly, sorting of a sequence
of n records requires [log2(n!)] key comparisons or more as
shown in Merge insertion method. Searching a particular
record from such a sorted sequence is possible at the
expense of [log2n] key comparisons. The problem of sorting
can be solved at the expense of constant storage if one uses
ternary heap-sort technique with complexity 1.47n log2n. A
balanced binary tree structure is an elegant way to ensure
optimal result.

II. PRELIMINARIES

The simplest algorithms usually take O(n2) time to sort n
objects and are only useful for sorting small numbers. One
of the most popular sorting algorithms is quicksort, which
takes O(nlog2n) time on average. Quicksort, a divide and
conquer based algorithm which works well for most
common applications, although, in the worst case, it can
take O(n2) time. There are other methods, such as heapsort
and mergesort, that take O(nlog2n) time in the worst case,
although their average case behaviour may not be quite as
good as that of quicksort.

III. PROPOSED WORK

The proposed work, uses a divide and conquer technique,
which will take a height balanced binary tree as an input
and will provide the sorted sequence as an output. The
sequence will be stored in an array.

The following algorithm follows the node structure.
Balance Left Right

Key NLC

Balance(p) is the difference of the height of the right
subtree of p and the height of the left subtree of p. This is a
two bit field that contains the values in the range -1, 0 and 1,
here p is the pointer of the root of the height balanced tree.
Left(p) is the pointer of the left subtree of the node p.
Right(p) is the pointer of the right subtree of the node p.
Key(p) is the data value stored in the node p. NLC(p) is the
number of left child in the node p,. Low is a integer variable,
which is initialized to 0. NLC denotes the number of left
child of p. This is a log2 n bit field, where n is the number
of nodes in the tree.
The main idea of the proposed work is to place the data,
stored in the AVL tree, into the relative portion of the array
in one by one order, such that the full array is sorted. The
Height balanced binary search tree ensures that all the key
values of the left subtree of p is less than the key value of p,
and all the key values of the right subtree of p is greater
than the key value of p. So, the relative order of a node
depends on the number of left child it has. If number of left
child of a node is known, then we can place the node easily
into the proper position of the array. Now divide the array
into two parts and use the same technique for the left and
right subtree recursively. From that position, the array is
broken into two parts, one left part which is for all the
nodes in the left subtree of p and the right part which is for
all the nodes in the right subtree of p.

THE RECURSIVE ALGORITHM

Input: A height balanced binary search tree with n number
of nodes, an array with size n.
Output: The sorted sequence of the data represented in the
given tree, stored in the array.
Data Structure: A modified height balanced binary tree.
The following is the recursive implementation of the above
said process.

rbtreesort (ptr, arr, low)
begin

if (ptr) then
begin

p← low + NLC[ptr]
arr[p] ← key[ptr]
rbtreesort (left[ptr], arr, low)
rbtreesort (right[ptr], arr, p+1)

end if
end rbtreesort

Here, ptr is the pointer of the root of the height balanced
binary search tree, low is the lower index of the array arr.

Arijit Bhattacharya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5558-5560

www.ijcsit.com 5558

THE NON-RECURSIVE ALGORITHM

Input: A height balanced binary search tree with n number
of nodes, an array with size n.
Output: The sorted sequence of the data represented in the
given tree, stored in the array.
Data Structure: A modified height balanced binary tree.

nrbtreesort (ptr, arr, low)
begin
 repeat
 while ptr do
 t ← low + NLC[ptr]
 arr[t] ← ptr
 if (right[ptr]) then
 Push (right[ptr], t+1)
 endif
 ptr ← left[ptr]
 endwhile
 ptr ← Pop()
 until ptr= NULL
end nrbtreesort

IV. ILLUSTRATION

Fig.1 Example of btreesort

In this example, first the root node is placed properly.
Number of left child in the root node is four, so the relative
order of the node in the array is low index plus number of
left child, which is zero plus four, is also four. From now on
we apply the same technique for the left and right subtree
recursively. The following table shows the steps how the
array is filled.

TABLE I
 0 1 2 3 4 5 6

Step 1 50

Step 2 30 50

Step 3 20 30 50

Step 4 10 20 30 50

Step 5 10 20 30 40 50

Step 6 10 20 30 40 50 100

Step 7 10 20 30 40 50 100 200

The technique is applicable for any binary search tree with
extra information of number of left child. The complexity
of the procedure will rise as the height of a binary search
tree. For a height balanced binary search tree with n internal
nodes, it is easy to show that the height always lies between
log2(n+1) and 1.4404log2(n+2) – 0.3277. So the time
complexity of the proposed algorithm will not be more than
O(nlog2 n).

Expression for minimum number of nodes in an AVL
tree of height h:

No= 1 N1 = 2
Nh= 1+ Nh-1 + Nh-2 = fh+3 – 1= [h+3/5] – 1
More precisely, minimum number of nodes in the heavier
sub-tree is given by Nh-1 = [h+2/5] – 1
Therefore, (Nh-1 +1) /(Nh +1) = 1/
Therefore, the number of bits needed to store
 Nh-1≤ log2 (Nh +1)- log2 () = l, say
Interestingly, the number of bits required is ≥ log2 (Nh-1+1) - 1
if l-1+ log2 () < log2 (Nh) ≤ l+ log2 ()
or 2 l-1+ log2 ()< Nh +1 ≤ 2 l + log2 ()

or .2 l-1 ≤ Nh < .2 l+1

Expression for a maximally skewed AVL tree of height h:

The left sub-tree (the heavier one) is a complete binary tree
of height h-1 and the right sub-tree is an AVL tree of height
h-2 that is constructed with minimum number of nodes.
No= 1 N1 = 2
Nh-2= 1+ Nh-3 + Nh-4 = fh+1 – 1= [h+1/5] – 1
N = NHEAVIER + NLIGHTER + 1
 = 2h – 1 + [h+1/5] – 1 + 1
 = 2h – 1 + [h+1/5]

TABLE III

Tree of N nodes having
height h

(NHEAVIER +1) / (NHEAVIER +NLIGHTER
+1)

Complete binary tree 2h / 2h+1 = ½

AVL tree with minimum
nodes h+2 /h+ 3 = 1/

Maximally skewed tree
2h /(2h – 1 + [h+1/5])
= 1/ (1-2-h+ (/2)h/5)
= 1/ (1-2-h + (/5)*cosh(/5))

V. CONCLUSION

The proposed sorting methodology ensures optimal result
for a binary search tree with static structure. Further
refinement of this data structure is needed to extend this
optimal result for a tree with dynamic structure.
Interestingly, this structure has a stricking feature, One can
traverse such a tree in pre-order fashion to extract its in-
order sequence.

Arijit Bhattacharya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5558-5560

www.ijcsit.com 5559

REFERENCES
[1] Adel'son-Velskii, G. M., and Y. M. Landis [1962]. An

algorithm for the organization of information, Dokl. Akad.
Nauk SSSR 146, pp. 263-266, English translation in Soviet
Math. Dokl. 3, pp. 1259-1262.

[2] Aho, A. V., J. E. Hopcroft, and J. D. Ullman [1974]. The
Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, Mass.

[3] Fischer, M. J. [1972]. Efficiency of equivalence algorithms,
Complexity of Computer Computations (R. E. Miller and J.
W. Thatcher, Eds.) pp. 153-168.

[4] Hoare, C. A. R. [1962]. "Quicksort," Computer J. 5:1, pp.
10-15.

[5] Knuth, D. E. [1973]. The Art of Computer Programming
Vol. III: Sorting and Searching, Addison-Wesley, Reading,
Mass.

[6] Nievergelt, J. [1974]. Binary search trees and file
organization, Computer Surveys 6:3, pp. 195-207.

[7] Singleton, R. C. [1969]. "Algorithm 347: an algorithm for
sorting with minimal storage," Comm. ACM 12:3, pp. 185-
187.

[8] Wirth, N. [1976]. Algorithms + Data Structures = Programs,
Prentice-Hall, Englewood Cliffs, N. J.

[9] J. Nievergelt and E. M. Reingold, "Binary Search Trees of
Bounded Balance," SIAM Journal on Computing 2 (1973),
33-43.

[10] M. O. Albertson and J. P. Hutchinson, Discrete Mathematics
with Algorithms, John Wiley & Sons, New York, 1988.

[11] W. H. Burge, Recursive Programming Techniques,
Addison-Wesley, Reading, Mass., 1975.

[12] D. D. Sleator and R. E. Tarjan, "Self-adjusting Binary
Search Trees," Journal of ACM 32 (1985), 652-686.

[13] K. Melhorn, "A Partial Analysis of Height-Balanced Trees
under Random Insertions and Deletions," SIAM Journal of
Computing 11 (1982), 748-760.

[14] T. H. Hibbard, "Some Combinatorial Properties of Certain
Trees with Applications to Searching and Sorting," Journal
of the ACM 9 (1962), 13-28.

[15] Heger, Dominique A. (2004), "A Disquisition on The
Performance Behavior of Binary Search Tree Data
Structures" , European Journal for the Informatics
Professional 5 (5): 67–75.

[16] S. Baase. “Computer Algorithms, Introduction to Design
and Analysis”, 3rd ed., Addison-Wesley, 2000.

Arijit Bhattacharya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5558-5560

www.ijcsit.com 5560

