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Abstract— Sorting of Data is classical problem in Data 
Structure. Best known sorting algorithm can sort a sequence 
of n Records at the expense of log(n !) key comparisons. This 
work suggests a new data structure that achieves this 
theoretical minimum. Interestingly, pre-order traversal 
performed in such a structure can be readily mapped onto an 
in-order sequence. 
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I. INTRODUCTION 

Classification of data or sorting, depending upon their 
salient features, is a classical problem of human civilization 
and its socio economic activities. This is an important 
traditional problem in business data processing that creates 
the interest of the theoreticians as well. Sorting of an 
arbitrary sequence of data and retrieval of the desired ones 
from the sorted sequence is a classical problem in 
computational science. Interestingly, sorting of a sequence 
of n records requires [log2(n!)] key comparisons or more as 
shown in Merge insertion method. Searching a particular 
record from such a sorted sequence is possible at the 
expense of [log2n] key comparisons. The problem of sorting 
can be solved at the expense of constant storage if one uses 
ternary heap-sort technique with complexity 1.47n log2n. A 
balanced binary tree structure is an elegant way to ensure 
optimal result. 

II. PRELIMINARIES

The simplest algorithms usually take O(n2) time to sort n 
objects and are only useful for sorting small numbers. One 
of the most popular sorting algorithms is quicksort, which 
takes O(nlog2n) time on average. Quicksort, a divide and 
conquer based algorithm which works well for most 
common applications, although, in the worst case, it can 
take O(n2) time. There are other methods, such as heapsort 
and mergesort, that take O(nlog2n) time in the worst case, 
although their average case behaviour may not be quite as 
good as that of quicksort. 

III. PROPOSED WORK

The proposed work,  uses a divide and conquer technique, 
which will take a height balanced binary tree as an input 
and will provide the sorted sequence as an output. The 
sequence will be stored in an array. 

The following algorithm follows the node structure. 
Balance Left Right 

Key NLC 

Balance(p) is the difference of the height of the right 
subtree of p and the height of the left subtree of p. This is a 
two bit field that contains the values in the range -1, 0 and 1, 
here p is the pointer of the root of the height balanced tree. 
Left(p) is the pointer of the left subtree of the node p. 
Right(p) is the pointer of the right subtree of the node p. 
Key(p) is the data value stored in the node p. NLC(p) is the 
number of left child in the node p,. Low is a integer variable, 
which is initialized to 0. NLC denotes the number of left 
child of p. This is a log2 n bit field, where n is the number 
of nodes in the tree.  
The main idea of the proposed work is to place the data, 
stored in the AVL tree, into the relative portion of the array 
in one by one order, such that the full array is sorted. The 
Height balanced binary search tree ensures that all the key 
values of the left subtree of p is less than the key value of p, 
and all the key values of the right subtree of p is greater 
than the key value of p. So, the relative order of a node 
depends on the number of left child it has. If number of left 
child of a node is known, then we can place the node easily 
into the proper position of the array. Now divide the array 
into two parts and use the same technique for the left and 
right subtree recursively.  From that position, the array is 
broken into two parts, one left part which is for all the 
nodes in the left subtree of p and the right part which is for 
all the nodes in the right subtree of p. 

THE  RECURSIVE ALGORITHM 

Input: A height balanced binary search tree with n number 
of nodes, an array with size n. 
Output: The sorted sequence of the data represented in the 
given tree, stored in the array. 
Data Structure: A modified height balanced binary tree. 
The following is the recursive implementation of the above 
said process.  

rbtreesort ( ptr, arr, low ) 
begin 

if ( ptr ) then 
begin 

p← low + NLC[ptr] 
arr[p] ← key[ptr] 
rbtreesort ( left[ptr], arr, low ) 
rbtreesort ( right[ptr], arr, p+1 ) 

end if 
end rbtreesort 

Here, ptr is the pointer of the root of the height balanced 
binary search tree, low is the lower index of the array arr. 
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THE  NON-RECURSIVE ALGORITHM 

Input: A height balanced binary search tree with n number 
of nodes, an array with size n. 
Output: The sorted sequence of the data represented in the 
given tree, stored in the array. 
Data Structure: A modified height balanced binary tree.  
 
nrbtreesort ( ptr, arr, low) 
begin 
 repeat 
  while ptr do 
   t ← low + NLC[ptr] 
   arr[t] ← ptr 
   if ( right[ptr] ) then 
    Push ( right[ptr], t+1) 
   endif 
   ptr ← left[ptr] 
  endwhile 
  ptr ← Pop() 
 until ptr= NULL 
end nrbtreesort 

IV. ILLUSTRATION 

 

 
Fig.1  Example of btreesort 

In this example, first the root node is placed properly. 
Number of left child in the root node is four, so the relative 
order of the node in the array is low index plus number of 
left child, which is zero plus four, is also four. From now on 
we apply the same technique for the left and right subtree 
recursively.  The following table shows the steps how the 
array is filled. 
 

TABLE I 
 0 1 2 3 4 5 6 

Step 1   50   

Step 2   30  50   

Step 3  20 30  50   

Step 4 10 20 30  50   

Step 5 10 20 30 40 50   

Step 6 10 20 30 40 50 100  

Step 7 10 20 30 40 50 100 200 

 
 

The technique is applicable for any binary search tree with 
extra information of number of left child. The complexity 
of the procedure will rise as the height of a binary search 
tree. For a height balanced binary search tree with n internal 
nodes, it is easy to show that the height always lies between 
log2(n+1) and 1.4404log2(n+2) – 0.3277. So the time 
complexity of the proposed algorithm will not be more than 
O(nlog2 n). 
 
Expression for minimum number of nodes in an AVL 
tree of height h: 
 
No= 1 N1 = 2 
Nh= 1+ Nh-1 + Nh-2 = fh+3 – 1= [h+3/5] – 1 
More precisely, minimum number of nodes in the heavier 
sub-tree is given by Nh-1 = [h+2/5] – 1 
Therefore, (Nh-1 +1) /(Nh +1) = 1/  
Therefore, the number of bits needed to store 
 Nh-1≤ log2 (Nh +1)- log2 ()  = l, say 
Interestingly, the number of bits required is ≥ log2 (Nh-1+1) - 1 
if  l-1+ log2 () < log2 (Nh ) ≤ l+ log2 ()  
or  2 l-1+ log2 ()< Nh +1 ≤ 2 l + log2 () 

or .2 l-1     ≤ Nh     < .2 l+1 
 
Expression for a maximally skewed AVL tree of height h: 
 
The left sub-tree (the heavier one) is a complete binary tree 
of height h-1 and the right sub-tree is an AVL tree of height 
h-2 that is constructed with minimum number of nodes. 
No= 1 N1 = 2 
Nh-2= 1+ Nh-3 + Nh-4 = fh+1 – 1= [h+1/5] – 1 
N  = NHEAVIER + NLIGHTER + 1 
     = 2h – 1 + [h+1/5] – 1 + 1 
     = 2h – 1 + [h+1/5] 
 
 

TABLE III 

Tree of N nodes  having 
height h 

(NHEAVIER +1) / (NHEAVIER +NLIGHTER 
+1) 

Complete binary tree 2h / 2h+1   =  ½ 

AVL tree with minimum
nodes h+2 /h+ 3  = 1/ 

Maximally skewed tree
2h /( 2h – 1 + [h+1/5] ) 
= 1/ (1-2-h+ (/2)h/5) 
= 1/ (1-2-h + (/5)*cosh(/5)) 

V. CONCLUSION 

The proposed sorting methodology ensures optimal result 
for a binary search tree with static structure. Further 
refinement of this data structure is needed to extend this 
optimal result for a tree with dynamic structure. 
Interestingly, this structure has a stricking feature, One can 
traverse such a tree in pre-order fashion to extract its in-
order sequence.   
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